Time and space dimensions of gene dosage imbalance of aneuploidies revealed by single cell transcriptomes

Author:

Stamoulis Georgios,Garieri Marco,Makrythanasis Periklis,Letourneau Audrey,Guipponi Michel,Panousis Nikolaos,Sloan-Béna Frédérique,Falconnet Emilie,Ribaux Pascale,Borel Christelle,Santoni Federico,Antonarakis Stylianos E

Abstract

AbstractThe mechanisms underlying cellular and organismal phenotypes due to copy number alterations (CNA) are not fully understood. Aneuploidy is a major source of gene dosage imbalance due to CNA and viable human trisomies are model disorders of altered gene expression. To understand the cellular impact of gene dosage imbalance, we studied gene and allele specific expression (ASE) of 9668 single-cell fibroblasts in trisomies T21, T18, T13 and T8. To limit the bias of interindividual noise, all comparisons between euploid and trisomic single-cells were performed on an isogenic setting for all trisomies studied. Initially we examined 928 single cells with deep RNA-Seq. For T21 we used fibroblasts from one pair of monozygotic twins discordant for T21 and from mosaic T21. For T18, T13 and T8 we analyzed single cells from mosaic individuals. Single-cell analyses revealed inconsistencies concerning the overexpression of some genes observed in differential trisomic vs euploid bulk RNAseq while this imbalance was not detectable in trisomic vs. euploid single cells. Moreover, ASE profiling of all single cells uncovered a substantial monoallelic pattern of expression in the trisomic fraction of the genome. By classifying genes according to the level of mono and bi-allelic transcription, we have observed that, for genes with monoallelic and low-to-average expression, the altered gene dosage is mainly due to the higher fraction of cells simultaneously expressing these genes in the trisomic samples. These results were confirmed in a further experiment of 8740 single fibroblasts from the monozygotic twins discordant for T21 samples. We conclude that gene dosage imbalance is of bidimensional nature: over time (simultaneous expression of all alleles resulting in increased accumulation of RNA of copy altered genes in each single cell) as previously stated, and over space (increased fraction of cells simultaneously expressing copy altered genes). These results strongly suggest that each class of genes contributes to the phenotypic variability of trisomies according to its temporal and spatial behavior and propose an improved model to understand the effects of copy number alterations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3