Assessment of the cardiovascular adverse effects of drug-drug interactions through a combined analysis of spontaneous reports and predicted drug-target interactions

Author:

Ivanov SergeyORCID,Lagunin AlexeyORCID,Filimonov Dmitry,Poroikov Vladimir

Abstract

AbstractAdverse drug effects (ADEs) are one of the leading causes of death in developed countries and are the main reason for drug recalls from the market, whereas the ADEs that are associated with action on the cardiovascular system are the most dangerous and widespread. The treatment of human diseases often requires the intake of several drugs, which can lead to undesirable drug-drug interactions (DDIs), thus causing an increase in the frequency and severity of ADEs. An evaluation of DDI-induced ADEs is a nontrivial task and requires numerous experimental and clinical studies. Therefore, we developed a computational approach to assess the cardiovascular ADEs of DDIs.This approach is based on the combined analysis of spontaneous reports (SRs) and predicted drug-target interactions to estimate the five cardiovascular ADEs that are induced by DDIs, namely, myocardial infarction, ischemic stroke, ventricular tachycardia, cardiac failure, and arterial hypertension.We applied a method based on least absolute shrinkage and selection operator (LASSO) logistic regression to SRs for the identification of interacting pairs of drugs causing corresponding ADEs, as well as noninteracting pairs of drugs. As a result, five datasets containing, on average, 3100 ADE-causing and non-ADE-causing drug pairs were created. The obtained data, along with information on the interaction of drugs with 1553 human targets predicted by PASS Targets software, were used to create five classification models using the Random Forest method. The average area under the ROC curve of the obtained models, sensitivity, specificity and balanced accuracy were 0.838, 0.764, 0.754 and 0.759, respectively.The predicted drug targets were also used to hypothesize the potential mechanisms of DDI-induced ventricular tachycardia for the top-scoring drug pairs.The created five classification models can be used for the identification of drug combinations that are potentially the most or least dangerous for the cardiovascular system.Author summaryAssessment of adverse drug effects as well as the influence of drug-drug interactions on their manifestation is a nontrivial task that requires numerous experimental and clinical studies. We developed a computational approach for the prediction of adverse effects that are induced by drug-drug interactions, which are based on a combined analysis of spontaneous reports and predicted drug-target interactions. Importantly, the approach requires only structural formulas to predict adverse effects, and, therefore, may be applied for new, insufficiently studied drugs. We applied the approach to predict five of the most important cardiovascular adverse effects, because they are the most dangerous and widespread. These effects are myocardial infarction, ischemic stroke, ventricular tachycardia, arterial hypertension and cardiac failure. The accuracies of predictive models were relatively high, in the range of 73-81%; therefore, we performed a prediction of the five cardiovascular adverse effects for the large number of drug pairs and revealed the combinations that are the most dangerous for the cardiovascular system. We consider that the developed approach can be used for the identification of pairwise drug combinations that are potentially the most or least dangerous for the cardiovascular system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3