Marginated aberrant red blood cells induce pathologic vascular stress fluctuations in a computational model of hematologic disorders

Author:

Cheng XiaopoORCID,Caruso Christina,Lam Wilbur A.ORCID,Graham Michael D.ORCID

Abstract

Red blood cell (RBC) disorders affect billions worldwide. While alterations in the physical properties of aberrant RBCs and associated hemodynamic changes are readily observed, in conditions such as sickle cell disease and iron deficiency, RBC disorders can also be associated with vascular dysfunction. The mechanisms of vasculopathy in those diseases remain unclear and scant research has explored whether biophysical alterations of RBCs can directly affect vascular function. Here we hypothesize that the purely physical interactions between aberrant RBCs and endothelial cells, due to the margination of stiff aberrant RBCs, play a key role in this phenomenon for a range of disorders. This hypothesis is tested by direct simulations of a cellular scale computational model of blood flow in sickle cell disease, iron deficiency anemia, COVID-19, and spherocytosis. We characterize cell distributions for normal and aberrant RBC mixtures in straight and curved tubes, the latter to address issues of geometric complexity that arise in the microcirculation. In all cases aberrant RBCs strongly localize near the vessel walls (margination) due to contrasts in cell size, shape, and deformability from the normal cells. In the curved channel, the distribution of marginated cells is very heterogeneous, indicating a key role for vascular geometry. Finally, we characterize the shear stresses on the vessel walls; consistent with our hypothesis, the marginated aberrant cells generate large transient stress fluctuations due to the high velocity gradients induced by their near-wall motions. The anomalous stress fluctuations experienced by endothelial cells may be responsible for the observed vascular inflammation.Significance StatementA common and potentially life-threatening complication of blood cell disorders is inflammation and dysfunction of the vascular wall, for reasons that remain unclear. To address this issue, we explore a purely biophysical hypothesis involving red blood cells using detailed computational simulations. Our results show that red blood cells that are pathologically altered in cell shape, size, and stiffness, which occurs in various blood disorders, strongly marginate, residing primarily in the cell-free layer near blood vessel walls, generating large shear stress fluctuations at the vessel wall that may be responsible for endothelial damage and inflammation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3