Muscle Coordination Matters: Insights into Motor Planning using Corticospinal Responses during Functional Reaching

Author:

Augenstein Thomas EORCID,Oh Seonga,Norris Trevor A,Mekler Joshua,Sethi AmitORCID,Krishnan ChandramouliORCID

Abstract

AbstractThe central nervous system (CNS) moves the human body by forming a plan in the primary motor cortex and then executing this plan by activating the relevant muscles. It is possible to study motor planning by using noninvasive brain stimulation techniques to stimulate the motor cortex prior to a movement and examine the evoked responses. Studying the motor planning process can reveal useful information about the CNS, but previous studies have generally been limited to single degree of freedom movements (e.g.,wrist flexion). It is currently unclear if findings in these studies generalize to multi-joint movements, which may be influenced by kinematic redundancy and muscle synergies. Here, our objective was to characterize motor planning in the cortex prior to a functional reach involving the upper extremity. We asked participants to reach for a cup placed in front of them when presented with a visual “Go Cue”.Following the go cue, but prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in the magnitudes of evoked responses in several upper extremity muscles (MEPs). We varied each participant’s initial arm posture to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the go cue and movement onset to examine the time course of changes in the MEPs. We found that the MEPs in all proximal (shoulder and elbow) muscles increased as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated or even inhibited. We also found that facilitation varied with arm posture in a manner that reflected the coordination of the subsequent reach. We believe that these findings provide useful insight into the way the CNS plans motor skills.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3