Motor-Evoked Potentials for Early Individual Elements of an Action Sequence During Planning Reflect Parallel Activation Processes

Author:

Behmer Lawrence P.1ORCID,Crump Mathew J.C.2ORCID,Jantzen Kelly J.3

Affiliation:

1. Department of Psychology, Idaho State University, Pocatello, ID, USA

2. Brooklyn College, CUNY, Brooklyn, NY, USA

3. Western Washington University, Bellingham, WA, USA

Abstract

Several computational models make predictions about the activation states of individual elements of an action sequence during planning and execution; however, the neural mechanisms of action planning are still poorly understood. Simple chaining models predict that only the first response in an action sequence should be active during planning. Conversely, some parallel activation models suggest that during planning, a serial inhibition process places the individual elements of the action into a serial order across a winner-takes-all competitive choice gradient in which earlier responses are more active, and hence likely to be selected for execution compared with later responses. We triggered transcranial magnetic stimulation pulses at 200 or 400 ms after the onset of a five-letter word, in which all but one response was planned and typed with the left hand, except for a single letter which required a right index finger response exclusively at one of five serial positions. We measured the resulting motor-evoked potentials at the right index finger as a marker for the activation state of that planned response. We observed no difference in motor-evoked potential amplitude across any serial position when a right index finger response was planned at 200 ms after the onset of the word; however, we observed a graded pattern of activation at 400 ms, with earlier positions that required a right index finger response showing greater motor-evoked potentials amplitude compared with later positions. These findings provide empirical support for competitive queuing computational models of action planning.

Publisher

Human Kinetics

Subject

Physiology (medical),Neurology (clinical),Physical Therapy, Sports Therapy and Rehabilitation

Reference21 articles.

1. Parallel processing of serial movements in prefrontal cortex;Averbeck, B.B.,2002

2. The dynamic range of response set activation during action sequencing;Behmer, L.P., Jr.,2017

3. Parallel regulation of past, present, and future actions during sequencing;Behmer, L.P., Jr.,2018

4. MorePower 6.0 for ANOVA with relational confidence intervals and Bayesian analysis;Campbell, J.I.,2012

5. The space of affordances: A TMS study;Cardellicchio, P.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3