Author:
Rios Manolo U.,Ryder Bryan D.,Familiari Nicole,Joachimiak Łukasz A.,Woodruff Jeffrey B.
Abstract
ABSTRACTCentrosomes organize microtubules for mitotic spindle assembly and positioning. Forces mediated by these microtubules create tensile stresses on pericentriolar material (PCM), the outermost layer of centrosomes. How PCM resists these stresses is unclear at the molecular level. Here, we use cross-linking mass spectrometry (XL-MS) to map interactions underlying multimerization of SPD-5, an essential PCM scaffold component inC. elegans. We identified an interaction hotspot in an alpha helical hairpin motif in SPD-5 (a.a. 541-677). XL-MS data,ab initiostructural predictions, and mass photometry suggest that this region dimerizes to form a tetrameric coiled-coil. Mutating a helical section (a.a. 610-640) or a single residue (R592) inhibited PCM assembly in embryos. This phenotype was rescued by eliminating microtubule pulling forces, revealing that PCM assembly and material strength are interrelated. We propose that interactions mediated by the helical hairpin strongly bond SPD-5 molecules to each other, thus enabling PCM to assemble fully and withstand stresses generated by microtubules.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献