Abstract
AbstractCentrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by Pericentriolar Material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and microtubule formation remain unanswered, in part due to limited availability of molecular-resolution structural analysesin situ. Here, we use cryo-electron tomography to visualize centrosomes across the cell cycle in cells isolated fromC. elegansembryos. We describe a pseudo-timeline of centriole assembly and identify distinct structural features including a cartwheel in daughter centrioles, and incomplete microtubule doublets surrounded by a star-shaped density in mother centrioles. We find that centriole and PCM microtubules differ in protofilament number (13 versus 11) indicating distinct nucleation mechanisms. This difference could be explained by atypical γ-tubulin ring complexes with 11-fold symmetry identified at the minus ends of short PCM microtubules. We further characterize a porous and disordered network that forms the interconnected PCM. Thus, our work builds a three-dimensional structural atlas that helps explain how centrosomes assemble, grow, and achieve function.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献