Extreme mitochondrial reduction in a novel group of free-living metamonads

Author:

Williams Shelby K.ORCID,Hultqvist Jon JerlströmORCID,Eglit YanaORCID,Salas-Leiva Dayana E.ORCID,Curtis Bruce,Orr Russell,Stairs Courtney W.ORCID,Simpson Alastair G. B.ORCID,Roger Andrew J.ORCID

Abstract

AbstractMetamonads are a diverse group of heterotrophic microbial eukaryotes adapted to living in hypoxic environments. All metamonads but one harbour metabolically altered ‘mitochondrion-related organelles’ (MROs) with reduced functions relative to aerobic mitochondria, however the degree of reduction varies markedly over the metamonad tree. To further investigate metamonad MRO diversity, we generated high quality draft genomes, transcriptomes, and predicted proteomes for five recently discovered free-living metamonads. Phylogenomic analyses place these organisms in a clade sister to the Fornicata – a group of metamonads that includes parasitic and free-living diplomonads andCarpediemonas-like organisms. Extensive bioinformatic analyses of the manually curated gene models showed that these organisms have extremely reduced MROs in comparison to other free-living metamonads. Loss of the mitochondrial iron-sulfur cluster (ISC) assembly system in some organisms in this group appears to be linked to the acquisition in their common ancestral lineage of a SUF-like minimal system (SMS) Fe/S cluster pathway through lateral gene transfer (LGT). One of the isolates, named ‘RC’, appears to have undergone even more drastic mitochondrial reduction losing almost all other detectable MRO-related functions. The extreme mitochondrial reduction observed within this free-living anaerobic protistan clade is unprecedented and demonstrates that mitochondrial functions, under some conditions, can be almost completely lost even in free-living organisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3