Unique interactions and functions of the mitochondrial small Tims inTrypanosoma brucei

Author:

Quiñones Guillén Linda S.,Gonzalez Fidel Soto,Darden Chauncey,Khan Muhammad,Tripathi Anuj,Smith Joseph T.,Cooley Ayorinde,Paromov Victor,Davis Jamaine,Misra Smita,Chaudhuri Minu

Abstract

AbstractTrypanosoma bruceiis an early divergent parasitic protozoan that causes a fatal disease, African trypanosomiasis.T. bruceipossesses a unique and essential translocase of the mitochondrial inner membrane, the TbTIM17 complex. TbTim17 associates with 6 small TbTims, (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction pattern of the small TbTims with each other and TbTim17 are not clear. Here, we demonstrated by yeast two-hybrid (Y2H) analysis that all six small TbTims interact with each other, but stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. Each of the small TbTims also interact directly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial to maintain the steady-state levels of the TbTIM17 complex. Co-immunoprecipitation analyses fromT. bruceimitochondrial extracts also showed that TbTim10 has a stronger association with TbTim9 and TbTim8/13, but a weaker association with TbTim13, whereas TbTim13 has a stronger connection with TbTim17. Analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except TbTim13, is present in ∼70 kDa complexes, which could be heterohexameric forms of the small TbTims. However, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionated with TbTim17. Altogether, our results demonstrated that TbTim13 is a part of the TbTIM complex and the smaller complexes of the small TbTims likely interact with the larger complex dynamically. Therefore, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific inT. brucei.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3