Abstract
AbstractNuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location specific mitochondrial targeting signals (MTSs) and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, MTSs of multi-pass Tims are less defined. Here we report the characterization of the MTSs ofTrypanosoma bruceiTim17 (TbTim17), an essential component of the most divergent TIM complex. TbTim17 possesses a characteristic secondary structure including four predicted transmembrane (TM) domains in the center with hydrophilic N- and C-termini. After examining mitochondrial localization of various deletion and site-directed mutants of TbTim17 inT. bruceiusing subcellular fractionation and confocal microscopy we located at least two internal signals, 1) within TM1 (31-50 AAs) and 2) TM4 + Loop 3 (120-136 AAs). Both signals are required for proper targeting and integration of TbTim17 in the membrane. Furthermore, a positively charged residue (K122) is critical for mitochondrial localization of TbTim17. This is the first report of characterizing the internal mitochondrial targeting signals (ITS) for a multipass inner membrane protein in a divergent eukaryote, likeT. brucei.SummaryInternal targeting signals within the TM1, TM4 with Loop 3, and residue K122 are required collectively for import and integration of TbTim17 in theT. bruceimitochondrion. This information could be utilized to block parasite growth.
Publisher
Cold Spring Harbor Laboratory