Long-range repression by ecdysone receptor on complex enhancers of the insulin receptor gene

Author:

Thompson Katie,Suber Will,Nicholas Rachel,Arnosti David N.ORCID

Abstract

AbstractThe insulin signaling pathway is evolutionarily conserved throughout metazoans, playing key roles in development, growth, and metabolism. Misregulation of this pathway is associated with a multitude of disease states including diabetes, cancer, and neurodegeneration. Genome-wide association studies indicate that natural variants in putative intronic regulatory elements of the human insulin receptor gene (INSR)are associated with metabolic conditions, however, this gene’s transcriptional regulation remains incompletely studied.INSRis widely expressed throughout development and was previously described as a ‘housekeeping’ gene. Yet, there is abundant evidence that this gene is expressed in a cell-type specific manner, with dynamic regulation in response to environmental signals. The Drosophila insulin-like receptor gene (InR) is homologous to the humanINSRgene and was previously shown to be regulated by multiple transcriptional elements located primarily within the introns of the gene. These elements were roughly defined in ∼1.5 kbp segments, but we lack an understanding of the potential detailed mechanisms of their regulation, as well as the integrative output of the battery of enhancers in the entire locus. Using luciferase assays, we characterized the substructure of these cis-regulatory elements in Drosophila S2 cells, focusing on regulation through the ecdysone receptor (EcR) and the dFOXO transcription factor. The direct action of EcR on Enhancer 2 reveals a bimodal form of regulation, with active repression in the absence of the ligand, and positive activation in the presence of 20E. By identifying the location of activators of this enhancer, we characterized a long-range of repression acting over at least 475 bp, similar to the action of long-range repressors found in the embryo. dFOXO and 20E have contrasting effects on some of the individual regulatory elements, and for the adjacent enhancers 2 and 3, their influence was/was not found to be additive, indicating that enhancer action on this locus can/cannot be characterized in part by additive models. Other characterized enhancers from within this locus exhibited “distributed” or “localized” modes of action, suggesting that predicting the joint functional output of multiple regulatory regions will require a deeper experimental characterization. The noncoding intronic regions ofInRhave demonstrated dynamic regulation of expression and cell type specificity. This complex transcriptional circuitry goes beyond the simple conception of a ‘housekeeping’ gene. Further studies are aimed at identifying how these elements work together in vivo to generate finely tuned expression in tissue- and temporal-specific manners, to provide a guide to understanding the impact of natural variation in this gene’s regulation, applicable to human genetic studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3