Direct repeats bind the EcR/USP receptor and mediate ecdysteroid responses in Drosophila melanogaster

Author:

Antoniewski C1,Mugat B1,Delbac F1,Lepesant J A1

Affiliation:

1. Institut Jacques Monod, CNRS et Université Paris, France.

Abstract

The steroid hormone 20-hydroxyecdysone plays a key role in the induction and modulation of morphogenetic events throughout Drosophila development. Previous studies have shown that a heterodimeric nuclear receptor composed of the EcR and USP proteins mediates the action of the hormone at the transcriptional through binding to palindromic ecdysteroid mediates the action of the hormone at the transcriptional level through binding to palindromic ecdysteroid response elements (EcREs) such as those present in the promoter of the hsp27 gene or the fat body-specific enhancer of the Fbp1 gene. We show that in addition to palindromic EcREs, the EcR/USP heterodimer can bind in vitro with various affinities to direct repetitions of the motif AGGTCA separated by 1 to 5 nucleotides (DR1 to DR5), which are known to be target sites for vertebrate nuclear receptors. At variance with the receptors, EcR/USP was also found to bind to a DR0 direct repeat with no intervening nucleotide. In cell transformation assays, direct repeats DR0 to DR5 alone can render the minimum viral tk or Drosophila Fbp1 promoter responsive to 20-hydroxyecdysone, as does the palindromic hsp27 EcRE. In a transgenic assay, however, neither the palindromic hsp27 element nor direct repeat DR3 alone can make the Fbp1 minimal promoter responsive to premetamorphic ecdysteroid peaks. In contrast, DR0 and DR3 elements, when substituted for the natural palindromic EcRE in the context of the Fbp1 enhancer, can drive a strong fat body-specific ecdysteroid response in transgenic animals. These results demonstrate that directly repeated EcR/USP binding sites are as effective as palindromic EcREs in vivo. They also provide evidence that additional flanking regulatory sequences are crucially required to potentiate the hormonal response mediated by both types of elements and specify its spatial and temporal pattern.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference81 articles.

1. Molecular analysis of the initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription;Andres A. J.;Dev. Biol.,1993

2. Hormones, puffs and flies: the molecular control of metamorphosis by ecdysone;Andres A. J.;Trends Genet.,1992

3. .Antoniewski C. Unpublished data.

4. The ecdysone response enhancer of the Fbp1 gene of Drosophila melanogaster is a direct target for the EcR/USP nuclear receptor;Antoniewski C.;Mol. Cell. Biol.,1994

5. Structural features critical to the activity of an ecdysone receptor binding site;Antoniewski C.;Insect Biochem. Mol. Biol.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3