Plasmid-free cheater cells commonly evolve during laboratory growth

Author:

Bedore Amber M.,Waters Christopher M.

Abstract

AbstractIt has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, secretion of beta-lactamase from resistant cells, and subsequent degradation of nearby penicillin and related antibiotics, allows neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss still occurred. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.ImportancePlasmids are routinely used in microbiology as readouts of cell biology or tools to manipulate cell function. Central to these studies is the assumption that all cells in an experiment contain the plasmid. Plasmid maintenance in a host cell typically depends on a plasmid-encoded antibiotic resistance marker, which provides a selective advantage when the plasmid containing cell is grown in the presence of antibiotic. Here we find that growth of plasmid-containing bacteria during laboratory conditions in the presence of three distinct antibiotic families leads to the evolution of a significant number of plasmid-free cells, which rely on the resistance mechanisms of the plasmid-containing cells for viability. This process generates a heterogenous population of plasmid-free and plasmid-containing bacteria, an outcome which could confound further experimentation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3