Author:
Ghadermazi Parsa,Chan Siu Hung Joshua
Abstract
AbstractMicrobes are essential part of all ecosystems, influencing material flow and shaping their surroundings. Metabolic modeling has been a useful tool and provided tremendous insights into microbial community metabolism. However, current methods based on flux balance analysis (FBA) usually fail to predict metabolic and regulatory strategies that lead to long-term survival and stability especially in heterogenous communities. Here we introduce a novel reinforcement learning algorithm, Self-Playing Microbes in Dynamic FBA, that treats microbial metabolism as a decision-making process, allowing individual microbial agents to evolve by learning and adapting metabolic strategies for enhanced long-term fitness. This algorithm predicts what microbial flux regulation policies will stabilize in the dynamic ecosystem of interest in presence of other microbes with minimal reliance on predefined strategies. Throughout this article, we present several scenarios wherein our algorithm outperforms existing methods in reproducing outcomes, and we explore the biological significance of these predictions.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献