ADToolbox: Incorporating Metagenomics Data for Improved Prediction of Anaerobic Digestion Dynamics

Author:

Ghadermazi ParsaORCID,Rico Jorge L.ORCID,Rimmelman Ethan,Stenmark Siri,Reardon Kenneth F.ORCID,De Long SusanORCID,Chan Siu Hung JoshuaORCID

Abstract

AbstractHandling the global food waste requires sustainable solutions. Anaerobic digestion (AD) is a common approach for waste remediation and bioenergy production which has been traditionally used mainly for methane production. Shifting the focus from methane to volatile fatty acids (VFAs), such as acetic, propionic, and butyric acids, offers promising alternatives due to their diverse applications and higher added value. Achieving desired AD product distributions requires a comprehensive understanding of factors like temperature, pH, feedstock composition, and the complex microbial dynamics inherent in AD. Various AD modeling approaches exist, from simple equations to complex flux balance analysis (FBA) and machine learning (ML) model. The Anaerobic Digestion Model No. 1 (ADM 1) is a commonly used kinetic model, striking a reasonable balance between parameter requirements and biochemical details involved in the model. Yet, it falls short in capturing specific VFAs like caproic acid and integrating microbial information directly. We present ADToolbox, a Python package for modeling AD metabolism. ADToolbox incorporates metagenomic information into an enhanced ADM model. The model accommodates a more detailed feedstock degradation model and VFA and methanogenesis metabolism. ADToolbox provides a variety of interfaces such as command line interface and an interactive web interface line interface, and a Python API, facilitating large-scale metagenomic analyses and modeling simulations. In this article we indicate that prioritizing the microbial aspect of AD enhances flexibility and predictive power in terms of VFA production accuracy, contributing to sustainable waste management strategies. Explore ADToolbox athttps://chan-csu.github.io/ADToolboxfor detailed documentation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3