HIV-1 Vpr-induced DNA damage activates NF-κB through ATM-NEMO independent of cell cycle arrest

Author:

Sandoval Carina,Nisson Karly,Fregoso Oliver I.ORCID

Abstract

ABSTRACTLentiviral accessory genes enhance replication through diverse mechanisms. HIV-1 accessory protein Vpr modulates the host DNA damage response (DDR) at multiple steps through DNA damage, cell cycle arrest, the degradation of host proteins, and both the activation and repression of DDR signaling. Vpr also alters host and viral transcription; however, the connection between Vpr-mediated DDR modulation and transcriptional activation remains unclear. Here, we determined the cellular consequences of Vpr-induced DNA damage using Vpr mutants that allow us to separate the ability of Vpr to induce DNA damage from cell cycle arrest and other DDR phenotypes including host protein degradation and repression of DDR. RNA-sequencing of cells expressing Vpr or Vpr mutants identified that Vpr alters cellular transcription through mechanisms both dependent and independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), Vpr-induced DNA damage activates the ATM-NEMO pathway and alters cellular transcription via NF-κB/RelA signaling. HIV-1 infection of primary MDMs validated Vpr-dependent NF-κB transcriptional activation during infection. Both virion delivered andde novoexpressed Vpr induced DNA damage and activated ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional reprogramming can occur during early and late stages of viral replication. Together, our data identifies a mechanism by which Vpr activates NF-κB through DNA damage and the ATM-NEMO pathway, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral transcription and replication.IMPORTANCEThe HIV accessory protein Vpr is multi-functional and required for viral replicationin vivo, yet how Vpr enhances viral replication is unknown. Emerging literature suggests that a conserved function of Vpr is engagement of the host DNA damage response (DDR). For example, Vpr activates DDR signaling, causes DDR-dependent cell cycle arrest, promotes degradation of various DDR proteins, and alters cellular consequences of DDR activation. However, a central understanding of how these phenotypes connect and how they affect HIV-infected cells remains unknown. Here, we found that Vpr-induced DNA damage alters the host transcriptome by activating an essential transcription pathway, NF-κB. This occurs early during infection of primary human immune cells, suggesting NF-κB activation and transcriptome remodeling are important for establishing productive HIV-1 infection. Together, our study provides novel insights into how Vpr alters the host environment through the DDR, and what roles Vpr and the DDR play to enhance HIV replication.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3