CRISPRi-TnSeq: A genome-wide high-throughput tool for bacterial essential-nonessential genetic interaction mapping

Author:

Jana Bimal,Liu Xue,Dénéréaz JulienORCID,Park Hongshik,Leshchiner Dmitry,Liu Bruce,Gallay ClémentORCID,Veening Jan-WillemORCID,van Opijnen Tim

Abstract

AbstractGenetic interaction networks can help identify functional connections between genes and pathways, which can be leveraged to establish (new) gene function, drug targets, and fill pathway gaps. Since there is no optimal tool that can map genetic interactions across many different bacterial strains and species, we develop CRISPRi-TnSeq, a genome-wide tool that maps genetic interactions between essential genes and nonessential genes through the knockdown of a targeted essential gene (CRISPRi) and the simultaneous knockout of individual nonessential genes (Tn-Seq). CRISPRi-TnSeq thereby identifies, on a genome-wide scale, synthetic and suppressor-type relationships between essential and nonessential genes, enabling the construction of essential-nonessential genetic interaction networks. To develop and optimize CRISPRi-TnSeq, CRISPRi strains were obtained for 13 essential genes inStreptococcus pneumoniae,involved in different biological processes including metabolism, DNA replication, transcription, cell division and cell envelope synthesis. Transposon-mutant libraries were constructed in each strain enabling screening of ∼24,000 gene-gene pairs, which led to the identification of 1,334 genetic interactions, including 754 negative and 580 positive genetic interactions. Through extensive network analyses and validation experiments we identify a set of 17 pleiotropic genes, of which a subset tentatively functions as genetic capacitors, dampening phenotypic outcomes and protecting against perturbations. Furthermore, we focus on the relationships between cell wall synthesis, integrity and cell division and highlight: 1) how essential gene knockdown can be compensated by rerouting flux through nonessential genes in a pathway; 2) the existence of a delicate balance between Z-ring formation and localization, and septal and peripheral peptidoglycan (PG) synthesis to successfully accomplish cell division; 3) the control of c-di-AMP over intracellular K+and turgor, and thereby modulation of the cell wall synthesis machinery; 4) the dynamic nature of cell wall protein CozEb and its effect on PG synthesis, cell shape morphology and envelope integrity; 5) functional dependency between chromosome decatenation and segregation, and the critical link with cell division, and cell wall synthesis. Overall, we show that CRISPRi-TnSeq uncovers genetic interactions between closely functionally linked genes and pathways, as well as disparate genes and pathways, highlighting pathway dependencies and valuable leads for gene function. Importantly, since both CRISPRi and Tn-Seq are widely used tools, CRISPRi-TnSeq should be relatively easy to implement to construct genetic interaction networks across many different microbial strains and species.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3