Myeloid Cell Derived IL1β Contributes to Pulmonary Vascular Remodeling in Heart Failure with Preserved Ejection Fraction

Author:

Agrawal VineetORCID,Kropski Jonathan A.ORCID,Gokey Jason J.,Kobeck Elizabeth,Murphy Matthew,Murray Katherine T.,Fortune Niki L.,Moore Christy S.,Meoli David F.,Monahan Ken,Su Yan Ru,Blackwell Thomas,Gupta Deepak K.,Talati Megha H.,Gladson Santhi,Carrier Erica J.,West James D.,Hemnes Anna R.

Abstract

ABSTRACTBackgroundPulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) is a common and highly morbid syndrome, but mechanisms driving PH-HFpEF are not well understood. We sought to determine whether a well-accepted murine model of HFpEF also displays features of PH in HFpEF, and we sought to identify pathways that might drive early remodeling of the pulmonary vasculature in HFpEF.MethodsEight week old male and female C57/BL6J mice were given either L-NAME and high fat diet (HFD) or control water/diet for 2,5, and 12 weeks. Bulk RNA sequencing and single cell RNA sequencing was performed to identify early and cell-specific pathways that might regulate pulmonary vascular remodeling in PH-HFpEF. Finally, clodronate liposome and IL1β antibody treatments were utilized to deplete macrophages or IL1β, respectively, to assess their impact on pulmonary vascular remodeling in HFpEF.ResultsMice given L-NAME/HFD developed PH, small vessel muscularization, and right heart dysfunction after 2 weeks of treatment. Inflammation-related gene ontologies were over-represented in bulk RNA sequencing analysis of whole lungs, with an increase in CD68+ cells in both murine and human PH-HFpEF lungs. Cytokine profiling of mouse lung and plasma showed an increase in IL1β, which was confirmed in plasma from patients with HFpEF. Single cell sequencing of mouse lungs also showed an increase in M1-like, pro-inflammatory populations of Ccr2+ monocytes and macrophages, and transcript expression of IL1β was primarily restricted to myeloid-type cells. Finally, clodronate liposome treatment prevented the development of PH in L-NAME/HFD treated mice, and IL1β antibody treatment also attenuated PH in L-NAME/HFD treated mice.ConclusionsOur study demonstrated that a well-accepted model of HFpEF recapitulates features of pulmonary vascular remodeling commonly seen in patients with HFpEF, and we identified myeloid cell derived IL1β as an important contributor to PH in HFpEF.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3