The Latest in Animal Models of Pulmonary Hypertension and Right Ventricular Failure

Author:

Boucherat Olivier12ORCID,Agrawal Vineet3,Lawrie Allan45ORCID,Bonnet Sebastien12ORCID

Affiliation:

1. Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada (O.B., S.B.).

2. Department of Medicine, Université Laval, Québec, Canada (O.B., S.B.).

3. Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (V.A.).

4. Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, United Kingdom (A.L.).

5. Insigneo Institute for In Silico Medicine, Sheffield, United Kingdom (A.L.).

Abstract

Pulmonary hypertension (PH) describes heterogeneous population of patients with a mean pulmonary arterial pressure >20 mm Hg. Rarely, PH presents as a primary disorder but is more commonly part of a complex phenotype associated with comorbidities. Regardless of the cause, PH reduces life expectancy and impacts quality of life. The current clinical classification divides PH into 1 of 5 diagnostic groups to assign treatment. There are currently no pharmacological cures for any form of PH. Animal models are essential to help decipher the molecular mechanisms underlying the disease, to assign genotype-phenotype relationships to help identify new therapeutic targets, and for clinical translation to assess the mechanism of action and putative efficacy of new therapies. However, limitations inherent of all animal models of disease limit the ability of any single model to fully recapitulate complex human disease. Within the PH community, we are often critical of animal models due to the perceived low success upon clinical translation of new drugs. In this review, we describe the characteristics, advantages, and disadvantages of existing animal models developed to gain insight into the molecular and pathological mechanisms and test new therapeutics, focusing on adult forms of PH from groups 1 to 3. We also discuss areas of improvement for animal models with approaches combining several hits to better reflect the clinical situation and elevate their translational value.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3