Rational engineering of binding pocket’s structure and dynamics in penicillin G acylase for selective degradation of bacterial signaling molecules

Author:

Grulich MichalORCID,Surpeta BartlomiejORCID,Palyzová AndreaORCID,Marešová HelenaORCID,Zahradník JiříORCID,Brezovsky JanORCID

Abstract

ABSTRACTThe rapid increase in antibiotic-resistant bacteria and the inability to provide new generations of potent antimicrobials necessitates the search for new, unconventional solutions. Methods based on targeting bacterial communication induced by signaling molecules, known as quorum sensing, are gaining increasing interest. Quorum quenching (QQ), as the process of interrupting this communication is called, can be achieved by enzymatic degradation of signaling molecules and represents a promising solution as it limits the expression of genes responsible for virulence, biofilm formation, and drug resistance. It is also believed to circumvent common resistance mechanisms. Therefore, enzymes with QQ activity represent potential next-generation antimicrobial agents for use in medicine, industry, and other areas of life. This work focuses on a biotechnologically optimized penicillin G acylase fromEscherichia coli(ecPGA), for which primary QQ activity for smaller signaling molecules was recently confirmed. Herein, we introduced triple-point mutations within the binding pocket by an ensemble-based design aimed at modulating the pocket structure and the dynamics of its entrance gates. Next, we proposed a computational workflow to select promising combinations for further modeling. We selected three candidates for experimental evaluation using molecular dynamics simulations of the constructs with six different, biologically relevant signaling molecules. These comprised (i) the VAF variant with enhanced activity towards the medium-sized ligands like the signaling molecule ofBurkholderia cenocepacia, C08-HSL (N-octanoyl-L-homoserine lactone); (ii) the YAF variant preferring longer substrates like the signaling compound of pathogenicVibriospecies, C10-HSL (N-decanoyl-L-homoserine lactone); and finally (iii) the MSF variant with improved efficacy for the longest substrate, C12-3O-HSL (N-3-oxo-dodecanoyl-L-homoserine lactone), the signaling molecule ofPseudomonas aeruginosa. In-depth analyses of these engineered variants revealed modulated topology and dynamics of the binding pockets. While we could consistently expand the pockets in these variants, the reactive binding of longer substrates became limited, due to either overly promoted dynamics of the pocket in the VAF variant or an overstabilized pocket in the MSF variant. In summary, we demonstrated the designability of ecPGA for improved QQ and provided insights into the role of adequately modulated pocket dynamics for the activity. Such knowledge, together with the methodology developed for filtering and scoring large datasets of potential variants that reflect the outcomes of our biochemical assays, may provide a suitable toolbox for future exploration and design of tailored QQ acylases toward particular signaling molecules, making them viable antimicrobial agents.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3