An Explainable and Robust Deep Learning Approach for Automated Electroencephalography-based Schizophrenia Diagnosis

Author:

Sattiraju Abhinav,Ellis Charles A.ORCID,Miller Robyn L.ORCID,Calhoun Vince D.ORCID

Abstract

AbstractSchizophrenia (SZ) is a neuropsychiatric disorder that affects millions globally. Current diagnosis of SZ is symptom-based, which poses difficulty due to the variability of symptoms across patients. To this end, many recent studies have developed deep learning methods for automated diagnosis of SZ, especially using raw EEG, which provides high temporal precision. For such methods to be productionized, they must be both explainable and robust. Explainable models are essential to identify biomarkers of SZ, and robust models are critical to learn generalizable patterns, especially amidst changes in the implementation environment. One common example is channel loss during EEG recording, which could be detrimental to classifier performance. In this study, we developed a novel channel dropout (CD) approach to increase the robustness of explainable deep learning models trained on EEG data for SZ diagnosis to channel loss. We developed a baseline convolutional neural network (CNN) architecture and implement our approach as a CD layer added to the baseline (CNN-CD). We then applied two explainability approaches to both models for insight into learned spatial and spectral features and show that the application of CD decreases model sensitivity to channel loss. The CNN and CNN-CD achieved accuracies of 81.9% and 80.9% on testing data, respectively. Furthermore, our models heavily prioritized the parietal electrodes and the α-band, which is supported by existing literature. It is our hope that this study motivates the further development of explainable and robust models and bridges the transition from research to application in a clinical decision support role.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3