Chromatin organization by an interplay of loop extrusion and compartmental segregation

Author:

Nuebler Johannes,Fudenberg Geoffrey,Imakaev Maxim,Abdennur Nezar,Mirny Leonid

Abstract

AbstractMammalian chromatin is organized on length scales ranging from individual nucleosomes to chromosomal territories. At intermediate scales two dominant features emerge in interphase: (i) alternating regions (<5Mb) of active and inactive chromatin that spatially segregate into different compartments, and (ii) domains (<1Mb), i.e. regions that preferentially interact internally, which are also termed topologically associating domains (TADs) and are central to gene regulation. There is growing evidence that TADs are formed by active extrusion of chromatin loops by cohesin, whereas compartments are established by a phase separation process according to local chromatin states. Here we use polymer simulations to examine how the two processes, loop extrusion and compartmental segregation, work collectively and potentially interfere in shaping global chromosome organization. Our integrated model faithfully reproduces Hi-C data from previously puzzling experimental observations, where targeting of the TAD-forming machinery led to changes in compartmentalization. Specifically, depletion of chromatin-associated cohesin reduced TADs and revealed hidden, finer compartments, while increased processivity of cohesin led to stronger TADs and reduced compartmentalization, and depletion of the TAD boundary protein, CTCF, weakened TADs while leaving compartments unaffected. We reveal that these experimental perturbations are special cases of a general polymer phenomenon of active mixing by loop extrusion. This also predicts that interference with chromatin epigenetic states or nuclear volume would affect compartments but not TADs. Our results suggest that chromatin organization on the megabase scale emerges from competition of non-equilibrium active loop extrusion and epigenetically defined compartment structure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3