Live-cell 3D single-molecule tracking reveals how NuRD modulates enhancer dynamics

Author:

Basu SrinjanORCID,Shukron Ofir,Hall DominicORCID,Parruto Pierre,Ponjavic AleksORCID,Shah Devina,Boucher Wayne,Lando Dave,Zhang Wei,Reynolds Nicola,Sober Louisa H,Jartseva Aleksandra,Ragheb RamyORCID,Ma XiaoyanORCID,Cramard Julie,Floyd Robin,Brown GeorginaORCID,Balmer Jenny,Drury Thomas A,Carr Alex,Needham Lisa-MariaORCID,Aubert Alice,Communie Guillaume,Gor Kavan,Steindel MaikeORCID,Morey Luis,Blanco EnriqueORCID,Bartke Till,Di Croce LucianoORCID,Berger ImreORCID,Schaffitzel ChristianeORCID,Lee StevenORCID,Stevens Tim J,Klenerman DavidORCID,Hendrich BrianORCID,Holcman DavidORCID,Laue Ernest DORCID

Abstract

Enhancer-promoter dynamics are crucial for the spatiotemporal control of gene expression, but it remains unclear whether these dynamics are controlled by chromatin regulators, such as the nucleosome remodelling and deacetylase (NuRD) complex. The NuRD complex binds to all active enhancers to modulate transcription and here we use Hi-C experiments to show that it blurs TAD boundaries and increases the proximity of intermediate-range (~1 Mb) genomic sequences and enhancer-promoter interactions. To understand whether NuRD alters the dynamics of 3D genome structure, we developed an approach to segment and extract key biophysical parameters from 3D single-molecule trajectories of the NuRD complex determined using live-cell imaging. Unexpectedly, this revealed that the intact NuRD complex decompacts chromatin structure and makes NuRD-bound enhancers move faster, increasing the overall volume of the nucleus that these key regulatory regions explore. Interestingly, we also uncovered a rare fast-diffusing state of NuRD bound enhancers that exhibits directed motion. The NuRD complex reduces the amount of time that enhancers remain in this fast-diffusing state, which we propose might otherwise re-organise enhancer-promoter proximity. Thus, we uncover an intimate connection between a chromatin remodeller and the spatial dynamics of the local regions of the genome to which it binds.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3