Estimating required ‘lockdown’ cycles before immunity to SARS-CoV-2: Model-based analyses of susceptible population sizes, ‘S0’, in seven European countries including the UK and Ireland

Author:

Moran Rosalyn J.,Fagerholm Erik D.,Cullen Maell,Daunizeau Jean,Richardson Mark P.,Williams Steven,Turkheimer Federico,Leech Rob,Friston Karl J.

Abstract

AbstractBackgroundFollowing stringent social distancing measures, some European countries are beginning to report a slowed or negative rate of growth of daily case numbers testing positive for the novel coronavirus. The notion that the first wave of infection is close to its peak begs the question of whether future peaks or ‘second waves’ are likely. We sought to determine the current size of the effective (i.e. susceptible) population for seven European countries—to estimate immunity levels following this first wave. We compare these numbers to the total population sizes of these countries, in order to investigate the potential for future peaks.MethodsWe used Bayesian model inversion to estimate epidemic parameters from the reported case and death rates from seven countries using data from late January 2020 to April 5th 2020. Two distinct generative model types were employed: first a continuous time dynamical-systems implementation of a Susceptible-Exposed-Infectious-Recovered (SEIR) model and second: a partially observable Markov Decision Process (MDP) or hidden Markov model (HMM) implementation of an SEIR model. Both models parameterise the size of the initial susceptible population (‘S0’), as well as epidemic parameters. Parameter estimation (‘data fitting’) was performed using a standard Bayesian scheme (variational Laplace) designed to allow for latent unobservable states and uncertainty in model parameters.ResultsBoth models recapitulated the dynamics of transmissions and disease as given by case and death rates. The peaks of the current waves were predicted to be in the past for four countries (Italy, Spain, Germany and Switzerland) and to emerge in 0.5 – 2 weeks in Ireland and 1-3 weeks in the UK. For France one model estimated the peak within the past week and the other in the future in two weeks. Crucially, Maximum a posteriori (MAP) estimates of S0 for each country indicated effective population sizes of below 20% (of total population size), under both the continuous time and HMM models. Using for all countries—with a Bayesian weighted average across all seven countries and both models, we estimated that 6.4% of the total population would be immune. From the two models the maximum percentage of the effective population was estimated at 19.6% of the total population for the UK, 16.7% for Ireland, 11.4% for Italy, 12.8% for Spain, 18.8% for France, 4.7% for Germany and 12.9% for Switzerland.ConclusionOur results indicate that after the current wave, a large proportion of the total population will remain without immunity. This suggests that in the absence of strong seasonal effects, new medications or more comprehensive contact tracing, a further set of epidemic waves in different geographic centres are likely. These findings may have implications for ‘exit strategies’ from any lockdown stage.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3