COVID-19 diagnosis prediction in emergency care patients: a machine learning approach

Author:

de Moraes Batista André Filipe,Miraglia João Luiz,Rizzi Donato Thiago Henrique,Porto Chiavegatto Filho Alexandre Dias

Abstract

AbstractThe coronavirus disease (COVID-19) pandemic has increased the necessity of immediate clinical decisions and effective usage of healthcare resources. Currently, the most validated diagnosis test for COVID-19 (RT-PCR) is in shortage in most developing countries, which may increase infection rates and delay important preventive measures. The objective of this study was to predict the risk of positive COVID-19 diagnosis with machine learning, using as predictors only results from emergency care admission exams. We collected data from 235 adult patients from the Hospital Israelita Albert Einstein in São Paulo, Brazil, from 17 to 30 of March, 2020, of which 102 (43%) received a positive diagnosis of COVID-19 from RT-PCR tests. Five machine learning algorithms (neural networks, random forests, gradient boosting trees, logistic regression and support vector machines) were trained on a random sample of 70% of the patients, and performance was tested on new unseen data (30%). The best predictive performance was obtained by the support vector machines algorithm (AUC: 0.85; Sensitivity: 0.68; Specificity: 0.85; Brier Score: 0.16). The three most important variables for the predictive performance of the algorithm were the number of lymphocytes, leukocytes and eosinophils, respectively. In conclusion, we found that targeted decisions for receiving COVID-19 tests using only routinely-collected data is a promising new area with the use of machine learning algorithms.

Publisher

Cold Spring Harbor Laboratory

Reference12 articles.

1. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report 71. 2020.

2. Fisher D , Wilder-Smith A. The global community needs to swiftly ramp up the response to contain COVID-19. The Lancet 2020; S0140-6736(20)30679-6.

3. Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study;The Lancet,2020

4. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study;The Lancet,2020

5. Ministério da Saúde do Brasil. Protocolo de manejo clínico do coronavírus (covid-19) na atenção primária à saúde. 2020.

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3