Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. Ardabili, S. F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A. R., Reuter, U., Rabczuk, T., & Atkinson, P. M. (2020). COVID-19 outbreak prediction with machine learning. Algorithms, 13(10), 249.
2. Basri, A., & Arif, M. (2021). Classification of seizure types using Random Forest Classifier. Advances in Science and Technology Research Journal, 15(3), 167–178. https://doi.org/10.12913/22998624/140542.
3. Batista, A. F. M., Miraglia, J. L., Donato, T. H. R., & Filho, A. D. P. (2021). COVID-19 diagnosis prediction in emergency care patients: A machine learning approach. medRxiv. https://doi.org/10.1101/2020.04.04.20052092.
4. Brigato, L., & Iocchi, L. (2021). On the Effectiveness of Deep Ensembles for Small Data Tasks, International Conference on Learning Representations.
5. Brownlee, J. (2020). How to Develop a Light Gradient Boosted Machine (LightGBM) Ensemble. Accessed at September 28, 2021. https://machinelearningmastery.com/light-gradient-boosted-machine-lightgbm-ensemble/.