Estimating COVID-19 Prevalence in the United States: A Sample Selection Model Approach

Author:

Benatia David,Godefroy Raphael,Lewis Joshua

Abstract

SummaryBackgroundPublic health efforts to determine population infection rates from coronavirus disease 2019 (COVID-19) have been hampered by limitations in testing capabilities and the large shares of mild and asymptomatic cases. We developed a methodology that corrects observed positive test rates for non-random sampling to estimate population infection rates across U.S. states from March 31 to April 7.MethodsWe adapted a sample selection model that corrects for non-random testing to estimate population infection rates. The methodology compares how the observed positive case rate vary with changes in the size of the tested population, and applies this gradient to infer total population infection rates. Model identification requires that variation in testing rates be uncorrelated with changes in underlying disease prevalence. To this end, we relied on data on day-to-day changes in completed tests across U.S. states for the period March 31 to April 7, which were primarily influenced by immediate supply-side constraints. We used this methodology to construct predicted infection rates across each state over the sample period. We also assessed the sensitivity of the results to controls for state-specific daily trends in infection rates.ResultsThe median population infection rate over the period March 31 to April 7 was 0.9% (IQR 0.64 1.77). The three states with the highest prevalence over the sample period were New York (8.5%), New Jersey (7.6%), and Louisiana (6.7%). Estimates from mod-els that control for state-specific daily trends in infection rates were virtually identical to the baseline findings. The estimates imply a nationwide average of 12 population infections per diagnosed case. We found a negative bivariate relationship (corr. = -0.51) between total per capita state testing and the ratio of population infections per diagnosed case.InterpretationThe effectiveness of the public health response to the coronavirus pandemic will depend on timely information on infection rates across different regions. With increasingly available high frequency data on COVID-19 testing, our methodology could be used to estimate population infection rates for a range of countries and subnational districts. In the United States, we found widespread undiagnosed COVID-19 infection. Expansion of rapid diagnostic and serological testing will be critical in preventing recurrent unobserved community transmission and identifying the large numbers individuals who may have some level of viral immunity.FundingSocial Sciences and Humanities Research Council.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3