A Working Model to Inform Risk-Based Back to Work Strategies

Author:

Meier Kristen,Curnow Kirsten J.,Vavrek Darcy,Moon John,Farh Kyle,Chian Martin,Ragusa Robert,de Feo Eileen,Febbo Phillip G.

Abstract

ABSTRACTBackgroundThe coronavirus disease 2019 (COVID-19) pandemic has forced many businesses to close or move to remote work to reduce the potential spread of disease. Employers desiring a return to onsite work want to understand their risk for having an infected employee on site and how best to mitigate this risk. Here, we modelled a range of key metrics to help inform return to work policies and procedures, including evaluating the benefit and optimal design of a SARS-CoV-2 employee screening program.MethodsWe modeled a range of input variables including prevalence of COVID-19, time infected, number of employees, test sensitivity and specificity, test turnaround time, number of times tested within the infectious period, and sample pooling. We modeled the impact of these input variables on several output variables: number of healthy employees; number of infected employees; number of test positive and test negative employees; number of true positive, false positive, true negative, and false negative employees; positive and negative predictive values; and time an infected, potentially contagious employee is on site.ResultsWe show that an employee screening program can reduce the risk for onsite transmission across different prevalence values and group sizes. For example, at a pre-test asymptomatic community prevalence of 0.5% (5 in 1000) with an employee group size of 500, the risk for at least one infected employee on site is 91.8%, with 3 asymptomatic infected employees predicted within those 500 employees. Implementing a SARS-CoV-2 baseline screen with an 80% sensitivity and 99.5% specificity would reduce the risk of at least one infected employee on site to 39.4% and the predicted number of infected employees onsite (false negatives) to 1. Repetitive testing is required for ongoing vigilance of onsite employees. The expected number of days an infected employee is on site depends on test sensitivity, testing interval, and turnaround time. If the test interval is longer than the infectious period (∼14 days for COVID-19), testing will not detect the infected employee. Sample pooling reduces the number of tests performed, thereby reducing testing costs. However, the pooling methodology (eg, 1-stage vs 2-stage pooling, pool size) will impact the number of employees that screen positive, thereby affected the number of employees eligible to return to onsite work.ConclusionsThe modeling presented here can be used to help employers understand their risk for having an infected employee on site. Further, it details how an employee screening program can reduce this risk and shows how screening performance and frequency impact the effectiveness of a screening program. The primary factors determining the effectiveness of a screening program are test sensitivity and frequency of testing.DisclaimerThis publication is offered to businesses/employers as a model of potential risk arising from COVID19 in the workplace. While believed to be based on reliable data, the model described herein has not been prospectively validated and should not be relied upon for any purpose other than as an aid to understand the potential impacts of a number of variables on the risk of having COVID19 positive employees on a worksite. Decisions related to workplace safety; COVID19 related workplace testing; programs and procedures should be based upon your actual data and applicable laws and public health orders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3