Multi-level modeling of early COVID-19 epidemic dynamics in French regions and estimation of the lockdown impact on infection rate

Author:

Prague MélanieORCID,Wittkop LindaORCID,Collin Annabelle,Dutartre DanORCID,Clairon QuentinORCID,Moireau PhilippeORCID,Thiébaut RodolpheORCID,Hejblum Boris P.ORCID

Abstract

AbstractWe developed a multi-level model of the French COVID-19 epidemic at the regional level. We rely on a global extended Susceptible-Exposed-Infectious-Recovered (SEIR) mechanistic model as a simplified representation of the average epidemic process, with the addition of region specific random effects. Combining several French public datasets on the early dynamics of the epidemic, we estimate region-specific key parameters conditionally on this mechanistic model through Stochastic Approximation Expectation Maximization (SAEM) optimization usingMonolixsoftware. We thus estimate the basic reproductive numbers by region before lockdown (with a national average at 2.81 with 95% Confidence Interval [2.58; 3.07]), attack rates (i.e. percentages of infected people) over time per region which range between 1.9% and 9.9% as of May 11th, 2020, and the impact of nationwide lockdown on the infection rate which decreased the transmission rate by 76% towards reproductive numbers ranging from 0.63 to 0.73 at the end of lockdown across regions. These results confirm the low population immunity, the strong effect of the lockdown on the dynamics of the epidemics and the need for further intervention when lifting the lockdown to avoid an epidemic rebound.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3