Using a population-based Kalman estimator to model the COVID-19 epidemic in France: estimating associations between disease transmission and non-pharmaceutical interventions

Author:

Collin Annabelle1ORCID,Hejblum Boris P.23ORCID,Vignals Carole234,Lehot Laurent23ORCID,Thiébaut Rodolphe234ORCID,Moireau Philippe5ORCID,Prague Mélanie6ORCID

Affiliation:

1. Inria, Inria Bordeaux – Sud-Ouest, Bordeaux INP , IMB UMR 5251, Université Bordeaux , Talence , France

2. Inria, Inria Bordeaux – Sud-Ouest, Talence , Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, SISTM Team, UMR 1219 , F-33000 Bordeaux , France

3. Vaccine Research Institute , F-94000 Créteil , France

4. CHU Pellegrin , F-33000 Bordeaux , France

5. ISPED Inserm U1219 Bordeaux Population Health Bureau 23 146 rue Leo Saignat CS 61292 33076 Bordeaux Cedex , France

6. Inria, Inria Saclay-Ile de France, France and LMS, CNRS UMR 7649, Ecole Polytechnique, Institut Polytechnique de Paris , Palaiseau , France

Abstract

Abstract In response to the COVID-19 pandemic caused by SARS-CoV-2, governments have adopted a wide range of non-pharmaceutical interventions (NPI). These include stringent measures such as strict lockdowns, closing schools, bars and restaurants, curfews, and barrier gestures such as mask-wearing and social distancing. Deciphering the effectiveness of each NPI is critical to responding to future waves and outbreaks. To this end, we first develop a dynamic model of the French COVID-19 epidemics over a one-year period. We rely on a global extended Susceptible-Infectious-Recovered (SIR) mechanistic model of infection that includes a dynamic transmission rate over time. Multilevel data across French regions are integrated using random effects on the parameters of the mechanistic model, boosting statistical power by multiplying integrated observation series. We estimate the parameters using a new population-based statistical approach based on a Kalman filter, used for the first time in analysing real-world data. We then fit the estimated time-varying transmission rate using a regression model that depends on the NPIs while accounting for vaccination coverage, the occurrence of variants of concern (VoC), and seasonal weather conditions. We show that all NPIs considered have an independent significant association with transmission rates. In addition, we show a strong association between weather conditions that reduces transmission in summer, and we also estimate increased transmissibility of VoC.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3