Disrupted structural connectivity in ArcAβ mouse model of Aβ amyloidosis

Author:

Al-Amin Md. MamunORCID,Grandjean JoanesORCID,Klohs Jan,Kim JungsuORCID

Abstract

AbstractAlthough amyloid beta (Aβ) deposition is one of the major causes of white matter (WM) alterations in Alzheimer’s disease (AD), little is known about the underlying basis of WM damage and its association with global structural connectivity and network topology. We aimed to dissect the contributions of WM microstructure to structural connectivity and network properties in the ArcAβ mice model of Aβ amyloidosis.We acquired diffusion-weighted images (DWI) of wild type (WT) and ArcAβ transgenic (TG) mice using a 9.4 T MRI scanner. Fixel-based analysis (FBA) was performed to measure fiber tract-specific properties. We also performed three complementary experiments; to identify the global differences in structural connectivity, to compute network properties and to measure cellular basis of white matter alterations.Transgenic mice displayed disrupted structural connectivity centered to the entorhinal cortex (EC) and a lower fiber density and fiber bundle cross-section. In addition, there was a reduced network efficiency and degree centrality in weighted structural connectivity in the transgenic mice. To further examine the underlying neuronal basis of connectivity and network deficits, we performed histology experiments. We found no alteration in myelination and an increased level of neurofilament light (NFL) in the brain regions with disrupted connectivity in the TG mice. Furthermore, TG mice had a reduced number of perineuronal nets (PNN) in the EC.The observed FDC reductions may indicate a decrease in axonal diameter or axon count which would explain the basis of connectivity deficits and reduced network efficiency in TG mice. The increase in NFL suggests a breakdown of axonal integrity, which would reduce WM fiber health. Considering the pivotal role of the EC in AD, Aβ deposition may primarily increase NFL release, damaging PNN in the entorhinal pathway, resulting in disrupted structural connectivity.

Publisher

Cold Spring Harbor Laboratory

Reference90 articles.

1. Absolute diffusivities define the landscape of white matter degeneration in Alzheimer's disease

2. Adams, J. N. , Maass, A. , Harrison, T. M. , Baker, S. L. & Jagust, W. J. 2019. Cortical tau deposition follows patterns of entorhinal functional connectivity in aging. Elife, 8.

3. White Matter Damage in Alzheimer Disease and Its Relationship to Gray Matter Atrophy

4. Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw

5. Al-Amin, M. M. 2019. Does adult vitamin D deficiency alter cognition and hippocampal function?, University of Queensland.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3