White matter structural bases for predictive tapping synchronization

Author:

García-Saldivar PamelaORCID,de León Cynthia,Concha LuisORCID,Merchant HugoORCID

Abstract

AbstractWe determined the intersubject association between rhythmic entrainment abilities of human subjects during a synchronization continuation tapping task (SCT) and the macro and microstructural properties of their superficial (SWM) and deep (dWM) white matter. Diffusion-weighted images were obtained from 32 subjects who also performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the fiber density of U-fibers running tangentially to the cortex. Notably, the right audiomotor system showed individual differences in the density of U-fibers that were correlated with the degree of predictive entrainment across subjects. These correlations were selective for the synchronization epoch with auditory metronomes and were specific for tempos around 1.5 Hz. In addition, there was a significant association between predictive rhythmic entrainment and the density and bundle diameter of the corpus callosum (CC), forming a chronotopic map where behavioural correlations of short and long intervals were found with the anterior and posterior portions of the CC. Finally, the fiber bundle cross-section of the arcuate fasciculus, the CC, and the Superior Longitudinal Fasciculus showed a significant correlation with the mean asynchronies of the auditory SCT. These findings suggest that the structural properties of the SWM and dWM in the audiomotor system support the predictive abilities of subjects during rhythmic tapping, where the density of cortical U-fibers are linked to the preferred tapping tempo, and the bundle properties of CC define an interval selective topography that has an anterior posterior gradient.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3