Zirconium(IV)-IMAC for phosphopeptide enrichment in phosphoproteomics

Author:

Diez Ignacio ArribasORCID,Govender IreshynORCID,Naicker PrevinORCID,Stoychev StoyanORCID,Jordaan JustinORCID,Jensen Ole N.

Abstract

ABSTRACTPhosphopeptide enrichment is an essential step in large-scale, quantitative phosphoproteomics studies by mass spectrometry. Several phosphopeptide affinity enrichment techniques exist, such as Immobilized Metal ion Affinity Chromatography (IMAC) and Metal Oxide Affinity Chromatography (MOAC). We compared Zirconium (IV) IMAC (Zr-IMAC) magnetic microparticles to more commonly used Titanium (IV) IMAC (Ti-IMAC) and TiO2 magnetic microparticles for phosphopeptide enrichment from simple and complex protein samples prior phosphopeptide sequencing and characterization by mass spectrometry (LC-MS/MS). We optimized sample-loading conditions to increase phosphopeptide recovery for Zr-IMAC, Ti-IMAC and TiO2 based workflows. The performance of Zr-IMAC was enhanced by 19-22% to recover up to 5173 phosphopeptides from 200 µg of protein extract from HepG2/C3A cells, making Zr-IMAC the preferred method for phosphopeptide enrichment in this study. Ti-IMAC and TiO2 performance were also optimized to improve phosphopeptide numbers by 28% and 35%, respectively. Furthermore, Zr-IMAC based phosphoproteomics in the magnetic microsphere format identified 23% more phosphopeptides than HPLC-based Fe(III)-IMAC for same sample amount (200 µg), thereby adding 37% more uniquely identified phosphopeptides. We conclude that Zr-IMAC improves phosphoproteome coverage and recommend that this affinity enrichment method should be more widely used in biological and biomedical studies of cell signalling and in the search for disease-biomarkers.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3