A rapid, super-selective method for detection of single nucleotide variants in C. elegans

Author:

Touroutine Denis,Tanis Jessica E.

Abstract

ABSTRACTWith the widespread use of single nucleotide variants generated through mutagenesis screens, the million mutation project, and genome editing technologies, there is pressing need for an efficient and low-cost strategy to genotype single nucleotide substitutions. We have developed a rapid and inexpensive method for detection of point mutants through optimization of SuperSelective (SS) primers for end point PCR in Caenorhabditis elegans. Each SS primer consists of a 5’ “anchor” that hybridizes to the template, followed by a non-complementary “bridge,” and a “foot” corresponding to the target allele. The foot sequence is short, such that a single mismatch at the terminal 3’ nucleotide destabilizes primer binding and prevents extension, enabling discrimination of different alleles. We explored how length, stability, and sequence composition of each SS primer segment affected selectivity and efficiency in order to develop simple rules for primer design that allow for distinction between any mismatches in various genetic contexts over a broad range of annealing temperatures. Manipulating bridge length affects amplification efficiency, while modifying the foot sequence can increase discriminatory power. Flexibility in the positioning of the anchor enables SS primers to be used for genotyping in regions with sequences that are challenging for standard primer design. In summary, we have demonstrated flexibility in design of SS primers and their utility for genotyping in C. elegans. Since SS primers reliably detect single nucleotide variants, we propose that this method could have broad application for SNP mapping, screening of CRISPR mutants, and colony PCR to identify successful site-directed mutagenesis constructs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3