Abstract
ABSTRACTAmong vertebrates, placental mammals are particularly variable in the covariance between their cranial shapes and body size (allometry), with the notable exception of rodents. Australian murid rodents present an opportunity to assess the cause of this anomaly because they radiated on an ecologically diverse continent unique for lacking other terrestrial placentals. Here we used 3D geometric morphometrics to quantify species-level and evolutionary allometries in 38 species (317 crania) from all Australian murid genera. We ask if ecological opportunity resulted in greater allometric diversity; conversely, we test if intrinsic constraints and/or stabilizing selection conserved allometry. To increase confidence in species-level allometric slopes, we introduce a new phylogeny-based method of bootstrapping and randomly resampling across the whole sample. We found exceedingly conserved allometry across the 10 million year split between Mus and the clade containing Australian murids. Cranial shapes followed craniofacial evolutionary allometry (CREA) patterns, with larger species having relatively longer snouts and smaller braincases. CREA is consistent with both intrinsic constraints and stabilizing selection hypotheses for conserved allometry. However, large-bodied frugivores evolved faster, while carnivorous specialists showed skull modifications known to conflict with masticatory efficiency. These results suggest a strong role of stabilizing selection on the masticatory apparatus of murid rodents.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献