ALPACA: a fast and accurate approach for automated landmarking of three-dimensional biological structures

Author:

Porto ArthurORCID,Rolfe Sara M.,Maga A. MuratORCID

Abstract

AbstractLandmark-based geometric morphometrics has emerged as an essential discipline for the quantitative analysis of size and shape in ecology and evolution. With the ever-increasing density of digitized landmarks, the possible development of a fully automated method of landmark placement has attracted considerable attention. Despite the recent progress in image registration techniques, which could provide a pathway to automation, three-dimensional morphometric data is still mainly gathered by trained experts. For the most part, the large infrastructure requirements necessary to perform image-based registration, together with its system-specificity and its overall speed have prevented wide dissemination.Here, we propose and implement a general and lightweight point cloud-based approach to automatically collect highdimensional landmark data in 3D surfaces (Automated Landmarking through Point cloud Alignment and Correspondence Analysis). Our framework possesses several advantages compared with image-based approaches. First, it presents comparable landmarking accuracy, despite relying on a single, random reference specimen and much sparser sampling of the structure’s surface. Second, it is performant such that it can be efficiently run on consumer-grade personal computers. Finally, it is general and can be applied to any biological structure of interest, regardless of whether anatomical atlases are available.Our validation procedures indicate that the method is capable of recovering multivariate patterns of morphological variation that are largely indistinguishable from those obtained by manual digitization, indicating that the use of an automated landmarking approach should not result in different conclusions regarding the nature of multivariate patterns of morphological variation.The proposed point cloud-based approach has the potential to increase the scale and reproducibility of morphometrics research. To allow ALPACA to be used out-of-the-box by users with no prior programming experience, we implemented it as a module as part of the SlicerMorph project. SlicerMorph is an extension that enables geometric morphometrics data collection and 3D specimen analysis within the open-source 3D Slicer biomedical visualization ecosystem. We expect that convenient access to this platform will make ALPACA broadly applicable within ecology and evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3