One is not enough: on the effects of reference genome for the mapping and subsequent analyses of short-reads

Author:

Valiente-Mullor CarlosORCID,Beamud BeatrizORCID,Ansari IvánORCID,Francés-Cuesta CarlosORCID,García-González NerisORCID,Mejía LorenaORCID,Ruiz-Hueso Paula,González-Candelas FernandoORCID

Abstract

AbstractMapping of high-throughput sequencing (HTS) reads to a single arbitrary reference genome is a frequently used approach in microbial genomics. However, the choice of a reference may represent a source of errors that may affect subsequent analyses such as the detection of single nucleotide polymorphisms (SNPs) and phylogenetic inference. In this work, we evaluated the effect of reference choice on short-read sequence data from five clinically and epidemiologically relevant bacteria (Klebsiella pneumoniae, Legionella pneumophila, Neisseria gonorrhoeae, Pseudomonas aeruginosa and Serratia marcescens). Publicly available whole-genome assemblies encompassing the genomic diversity of these species were selected as reference sequences, and read alignment statistics, SNP calling, recombination rates, dN/dS ratios, and phylogenetic trees were evaluated depending on the mapping reference. The choice of different reference genomes proved to have an impact on almost all the parameters considered in the five species. In addition, these biases had potential epidemiological implications such as including/excluding isolates of particular clades and the estimation of genetic distances. These findings suggest that the single reference approach might introduce systematic errors during mapping that affect subsequent analyses, particularly for data sets with isolates from genetically diverse backgrounds. In any case, exploring the effects of different references on the final conclusions is highly recommended.Author summaryMapping consists in the alignment of reads (i.e., DNA fragments) obtained through high-throughput genome sequencing to a previously assembled reference sequence. It is a common practice in genomic studies to use a single reference for mapping, usually the ‘reference genome’ of a species —a high-quality assembly. However, the selection of an optimal reference is hindered by intrinsic intra-species genetic variability, particularly in bacteria. Biases/errors due to reference choice for mapping in bacteria have been identified. These are mainly originated in alignment errors due to genetic differences between the reference genome and the read sequences. Eventually, they could lead to misidentification of variants and biased reconstruction of phylogenetic trees (which reflect ancestry between different bacterial lineages). However, a systematic work on the effects of reference choice in different bacterial species is still missing, particularly regarding its impact on phylogenies. This work intended to fill that gap. The impact of reference choice has proved to be pervasive in the five bacterial species that we have studied and, in some cases, alterations in phylogenetic trees could lead to incorrect epidemiological inferences. Hence, the use of different reference genomes may be prescriptive to assess the potential biases of mapping.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3