Somatosensory signals from the controllers of an extra robotic finger support motor learning

Author:

Amoruso Elena,Dowdall Lucy,Kollamkulam Mathew Thomas,Ukaegbu Obioha,Kieliba Paulina,NG Tammy,Dempsey-Jones Harriet,Clode Danielle,Makin Tamar Rebecca

Abstract

Considerable resources are being invested to provide bidirectional control of substitutive and augmentative motor interfaces through artificial somatosensory feedback. Here, we investigated whether intrinsic somatosensory information, from body part(s) proportionally controlling an augmentation device, can be utilised to infer the device state and position, to better support motor control and learning. In a placebo-controlled design, we used local anaesthetic to attenuate somatosensory inputs to the big toes while participants learned to operate a toe-controlled robotic extra finger (Third Thumb) using pressure sensors. Motor learning outcomes were compared against a control group who received sham anaesthetic. The availability of somatosensory cues about the amount of exerted pressure generally facilitated acquisition, retention and transfer of motor skills, and performance under cognitive load. Motor performance was not impaired by anaesthesia when tasks involved close collaboration with the biological fingers, indicating that the brain could close the gap of the missing pressure signals by alternative means, including feedback from other body parts involved in the motor task. Together, our findings demonstrate that there are intrinsic natural avenues to provide surrogate position information to support motor control of an artificial body part, beyond artificial extrinsic signalling.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Handling the Complexities of Non-Anthropomorphic Hands;CHI Conference on Human Factors in Computing Systems Extended Abstracts;2022-04-27

2. Highlights from the 30th Annual Meeting of the Society for the Neural Control of Movement;Journal of Neurophysiology;2021-10-01

3. The neural resource allocation problem when enhancing human bodies with extra robotic limbs;Nature Machine Intelligence;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3