Mitochondria serve as axonal shuttle for Cox7c mRNA through mechanism that involves its mitochondrial targeting signal

Author:

Cohen Bar,Golani-Armon Adi,Altman Topaz,Savulescu Anca F.,Mhlanga Musa M.ORCID,Perlson Eran,Arava Yoav S.ORCID

Abstract

AbstractLocalized protein synthesis plays a key role in spatiotemporal regulation of the cellular proteome. Neurons, which extend axons over long distances, heavily depend on this process. However, the mechanisms by which axonal mRNAs are transported to protein target sites are not fully understood. Here, we describe a novel role for mitochondria in shuttling a nuclear encoded mRNA along axons. Fractionation analysis and smFISH revealed that the mRNA encoding Cox7c protein is preferentially associated with mitochondria from a neuronal cell line and from primary motor neuron axons. Live cell imaging of MS2-tagged Cox7c or Cryab control mRNA in primary motor neurons further confirmed the preferential colocalization of Cox7c mRNA with mitochondria. More importantly, Cox7c demonstrated substantial cotransport with mitochondria along axons. Intriguingly, the coding region, rather than the 3’UTR, was found to be the key domain for the cotransport. Furthermore, we show that puromycin treatment as well as hindering the synthesis of the mitochondrial targeting signal (MTS) reduced the colocalization. Overall, our results reveal a novel mRNA transport mode which exploits mitochondria as a shuttle and translation of the MTS as a recognition feature. Thus, mitochondria may play a role in spatial regulation of the axonal transcriptome and self-sustain their own proteome at distant neuronal sites.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3