In vitro compartmental system underlines the contribution of mitochondrial immobility to the ATP supply in the NMJ

Author:

Altman Topaz1,Geller Danielle12,Kleeblatt Elisabeth1ORCID,Gradus-Perry Tal1,Perlson Eran12ORCID

Affiliation:

1. Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel

2. Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel

Abstract

The neuromuscular junction (NMJ) is the largest, most complex synapse in the human body. Motor neuron (MN) diseases, such as amyotrophic lateral sclerosis (ALS), specifically target MNs and the NMJs. However, little is known about the reasons for MN selective neuronal and synaptic vulnerability in MN diseases. Here, utilizing a compartmental microfluidic in vitro co-culture system, we provide a possible explanation why the NMJ, other than its unusual dimensions, differs from other synapses. Using live imaging techniques, we discovered that cultured MNs display higher axonal and synaptic mitochondrial immobility compared with sympathetic neurons (SNs), leading to a profound enrichment of mitochondria only in the MN NMJ. Furthermore, employing a synaptic ATP sensor, we show that mitochondrial respiration is the key contributor to ATP production in MN NMJs but not in SN synapses. Taken together, our data suggest that mitochondrial localization underlies the unique and specific qualities of MN NMJs. Our findings shed light on the role of mitochondria in MN and NMJ maintenance, and possibly indicate how mitochondria may serve as a source for selective MN vulnerability in neurodegenerative diseases.

Funder

Israel Science Foundation

European Research Council

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3