Deep Learning for Caries Detection using Optical Coherence Tomography

Author:

Huang Yu-PingORCID,Lee Shyh-YuanORCID

Abstract

AbstractEarly detection of dental caries has been one of the most predominant topics studied over the last few decades. Conventional examination through visual-tactile inspection and radiography can be inaccurate and destructive to the tooth structure. The development of optical coherence tomography (OCT) has given dentistry an alternative diagnostic technique, which has been proven by numerous studies, that it has better sensitivity, specificity, and non-invasive characteristics. The growing popularity of artificial intelligence (AI) also contributes to a more efficient and effective way of image-based detection and decision-making. However, previous studies, which have attempted to employ AI for caries assessment, did not incorporate high-quality ground truth data. Therefore, this study aims to bypass this issue and highlights the importance of high-quality data. A two-phase study was carried out to explore different methods for caries detection. Initially, the comparison of caries detection based on OCT and apical radiography by 5 experienced clinicians was conducted. Then, five convolutional neural networks (CNNs), including AlexNet, VGG-16, ResNet-152, Xception, and ResNext-101, in the scope of AI were employed to detect caries and compared with the findings of the 5 clinicians. The data was preprocessed and labeled with the ground truth corresponding to microcomputed tomography (micro-CT) with rigorous definition. The weighted Kappa statistics suggested that OCT (ϰ= .699, SD = .090) showed a higher accuracy rate than radiography (ϰ= .407, SD = .049), and CNNs (ϰ= .860, SD = .049) were rated higher than clinicians (ϰ= .679, SD = .113), both at a .05 significance level. The best result was carried out by ResNet-152, which demonstrated a high accuracy rate of 95.21% and a sensitivity of 98.85%. These findings illustrate the importance of ground truth data for AI training and the potential of deep CNN algorithms combined with OCT for diagnosing dental caries.

Publisher

Cold Spring Harbor Laboratory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3