Group size and modularity interact to shape the spread of infection and information through animal societies

Author:

Evans Julian CORCID,Hodgson David JORCID,Boogert Neeltje JORCID,Silk Matthew JORCID

Abstract

AbstractSocial interactions between animals can provide many benefits, including the ability to gain useful environmental information through social learning. However, these social contacts can also facilitate the transmission of infectious diseases through a population. Animals engaging in social interactions must therefore face a trade-off between the potential informational benefits and the risk of acquiring disease. In order to understand how this trade-off can influence animal sociality, it is necessary to quantify the effects of different social structures on individuals’ likelihood of acquiring information versus infection Theoretical models have suggested that modular social networks, associated with the formation of groups or sub-groups, can slow spread of infection by trapping it within particular groups. However these social structures will not necessarily impact the spread of information in the same way if its transmission is considered as a “complex contagion”, e.g. through individuals copying the majority (conformist learning). Here we use simulation models to demonstrate that modular networks can promote the spread of information relative to the spread of infection, but only when the network is fragmented and group sizes are small. We show that the difference in transmission between information and disease is maximised for more well-connected social networks when the likelihood of transmission is intermediate. Our results have important implications for understanding the selective pressures operating on the social structure of animal societies, revealing that highly fragmented networks such as those formed in fission-fusion social groups and multilevel societies can be effective in modulating the infection-information trade-off for individuals within them.Significance statementRisk of infection is commonly regarded as one of the costs of animal social behaviours, while the potential for acquiring useful information is seen as a benefit. Balancing this risk of infection with the potential to gain useful information is one of the key trade-offs facing animals that engage in social interactions. In order to better understand this trade-off, it is necessary to quantify how different social structures can promote access to useful information while minimising risk of infection. We used simulations of disease and information spread to examine how group sizes and social network fragmentation influences both these transmission processes. Our models find that more subdivided networks slow the spread of disease far more than infection, but only group sizes are small. Our results demonstrate that showing that fragmented social structures can be more effective in balancing the infection-information trade-off for individuals within them.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3