Binocular Mirror-Symmetric Microsaccadic Sampling Enables Drosophila Hyperacute 3D-Vision

Author:

Kemppainen JoniORCID,Scales BenORCID,Haghighi Keivan RazbanORCID,Takalo JouniORCID,Mansour Neveen,McManus JamesORCID,Leko GaborORCID,Saari PaulusORCID,Hurcomb JamesORCID,Antohi AndraORCID,Suuronen Jussi-PetteriORCID,Blanchard FlorenceORCID,Hardie Roger C.ORCID,Song ZhuoyiORCID,Hampton Mark,Eckermann MarinaORCID,Westermeier Fabian,Frohn JasperORCID,Hoekstra HugoORCID,Lee Chi-HonORCID,Huttula MarkoORCID,Mokso RajmundORCID,Juusola MikkoORCID

Abstract

AbstractNeural mechanisms behind stereopsis, which requires simultaneous disparity inputs from two eyes, have remained mysterious. Here we show how ultrafast mirror-symmetric photomechanical contractions in the frontal forward-facing left and right eye photoreceptors give Drosophila super-resolution 3D-vision. By interlinking multiscale in vivo assays with multiscale simulations, we reveal how these photoreceptor microsaccades - by verging, diverging and narrowing the eyes’ overlapping receptive fields - channel depth information, as phasic binocular image motion disparity signals in time. We further show how peripherally, outside stereopsis, microsaccadic sampling tracks a flying fly’s optic flow field to better resolve the world in motion. These results change our understanding of how insect compound eyes work and suggest a general dynamic stereo-information sampling strategy for animals, robots and sensors.Significance statementTo move efficiently, animals must continuously work out their x,y,z-positions in respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes’ optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes’ whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a new morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila super-resolution 3D-vision and proposes neural computations for accurately predicting these flies’ depth-perception dynamics, limits, and visual behaviors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3