Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential

Author:

Murray Alison E.ORCID,Lo Chien-ChiORCID,Daligault Hajnalka E.ORCID,Avalon Nicole E.ORCID,Read Robert W.,Davenport Karen W.ORCID,Higham Mary L.,Kunde Yuliya,Dichosa Armand E.K.ORCID,Baker Bill J.ORCID,Chain Patrick S.G.ORCID

Abstract

AbstractThe Antarctic marine ecosystem harbors a wealth of biological and chemical innovation that has risen in concert over millennia since the isolation of the continent and formation of the Antarctic circumpolar current. Scientific inquiry into the novelty of marine natural products produced by Antarctic benthic invertebrates led to the discovery of a bioactive macrolide, palmerolide A, that has specific activity against melanoma and holds considerable promise as an anticancer therapeutic. While this compound was isolated from the Antarctic ascidian Synoicum adareanum, its biosynthesis has since been hypothesized to be microbially mediated, given structural similarities to microbially-produced hybrid non-ribosomal peptide-polyketide macrolides. Here, we describe a metagenome-enabled investigation aimed at identifying the biosynthetic gene cluster (BGC) and palmerolide A-producing organism. A 74 Kbp candidate BGC encoding the multi-modular enzymatic machinery (hybrid Type I-trans-AT polyketide synthase-non-ribosomal peptide synthetase and tailoring functional domains) was identified and found to harbor key features predicted as necessary for palmerolide A biosynthesis. Surveys of ascidian microbiome samples targeting the candidate BGC revealed a high correlation between palmerolide-gene targets and a single 16S rRNA gene variant (R=0.83 – 0.99). Through repeated rounds of metagenome sequencing followed by binning contigs into metagenome-assembled genomes, we were able to retrieve a near-complete genome (10 contigs) of the BGC-producing organism, a novel verrucomicrobium within the Opitutaceae family that we propose here as Candidatus Synoicihabitans palmerolidicus. The refined genome assembly harbors five highly similar BGC copies, along with structural and functional features that shed light on the host-associated nature of this unique bacterium.ImportancePalmerolide A has potential as a chemotherapeutic agent to target melanoma. We interrogated the microbiome of the Antarctic ascidian, Synoicum adareanum, using a cultivation-independent high-throughput sequencing and bioinformatic strategy. The metagenome-encoded biosynthetic machinery predicted to produce palmerolide A was found to be associated with the genome of a member of the S. adareanum core microbiome. Phylogenomic analysis suggests the organism represents a new deeply-branching genus, Candidatus Synoicihabitans palmerolidicus, in the Opitutaceae family of the Verrucomicrobia phylum. The Ca. S. palmerolidicus 4.29 Mb genome encodes a repertoire of carbohydrate-utilizing and transport pathways enabling its ascidian-associated lifestyle. The palmerolide-producer’s genome also contains five distinct copies of the large palmerolide biosynthetic gene cluster that may provide structural complexity of palmerolide variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3