Mitochondrial One-Carbon Flux has a Growth-Independent Role in Promoting Breast Cancer Metastasis

Author:

Kiweler NicoleORCID,Delbrouck Catherine,Neises Laura,Pozdeev Vitaly I.,Soriano-Baguet LeticiaORCID,Xian FengORCID,Benzarti Mohaned,Haase Lara,Schmoetten Maryse,Jaeger Christian,Noman Muhammad ZaeemORCID,Vazquez Alexei,Janji BassamORCID,Dittmar GunnarORCID,Brenner DirkORCID,Letellier ElisabethORCID,Meiser JohannesORCID

Abstract

AbstractProgression of primary cancer to metastatic disease is the most common cause of death in cancer patients with minimal treatment options available. Canonical drugs mainly target the proliferative capacity of cancer cells, which often leaves slow-proliferating, persistent cancer cells unaffected. Thus, we aimed to identify metabolic determinants that enable cell plasticity and foster treatment resistance and tumor escape.Using a panel of anti-cancer drugs, we uncovered that antifolates, despite inducing strong growth arrest, did not impact the cancer cell’s motility potential, indicating that nucleotide synthesis is dispensable for cell motility. Prolonged treatment even selected for more motile cancer subpopulations. We found that cytosolic inhibition of DHFR by MTX only abrogates cytosolic folate cycle, while mitochondrial one-carbon cycle remains highly active. Despite a decreased cellular demand for biomass production, de novo serine synthesis and formate overflow are increased, suggesting that mitochondria provide a protective environment that allows serine catabolism to support cellular motility during nucleotide synthesis inhibition.Enhanced motility of growth-arrested cells was reduced by inhibition of PHGDH-dependent de novo serine synthesis and genetic silencing of mitochondrial one-carbon cycle. In vivo targeting of mitochondrial one-carbon cycle and formate overflow strongly and significantly reduced lung metastasis formation in an orthotopic breast cancer model. In summary, we identified mitochondrial serine catabolism as a targetable, growth-independent metabolic vulnerability to limit metastatic progression.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3