Optimal spatial monitoring of populations described by reaction-diffusion models

Author:

Parisey Nicolas,Leclerc Melen,Adamczyk-Chauvat Katarzyna

Abstract

AbstractUsing spatialised population measurements and related geographic habitat data, it is quite feasible nowadays to derive parsimonious spatially explicit population models and to carry on their parameter estimation. To achieve such goal, reaction-diffusion models are fairly common in conservation biology and agricultural plant health where they are used, for example, for landscape planning or epidemiological surveillance. Unfortunately, if the mathematical methods and computational power are readily available, biological measurements are not. Despite the high throughput of some habitat related remote sensors, the experimental cost of biological measurements are, in our view, one of the worst bottleneck against a widespread usage of reaction-diffusion models. Hence, in this paper, we will recall some classical methods for optimal experimental design that we deem useful to spatial ecologist. Using two case studies, one in landscape ecology and one in conservation biology, we will show how to construct a priori experimental design minimizing variance of parameter estimates, enabling optimal experimental setup with pre and post hoc filtering for accommodating additional constraints.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. A computer vision for animal ecology

2. Cliff OM , Saunders DL , Fitch R. Robotic ecology: Tracking small dynamic animals with an autonomous aerial vehicle. Science Robotics. 2018;3(23).

3. Ucinski D. Optimal measurement methods for distributed parameter system identification. CRC press; 2004.

4. Sun NZ . Inverse Problems in Groundwater Modeling. Theory and Applications of Transport in Porous Media. Springer Netherlands; 1999. Available from: https://www.springer.com/gp/book/9780792329879.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3