Abstract
AbstractQuantitative or qualitative differences in immunity may drive and predict clinical severity in COVID-19. We therefore measured modules of serum pro-inflammatory, anti-inflammatory and anti-viral cytokines in combination with the anti-SARS-CoV-2 antibody response in COVID-19 patients admitted to tertiary care. Using machine learning and employing unsupervised hierarchical clustering, agnostic to severity, we identified three distinct immunotypes that were shown post-clustering to predict very different clinical courses such as clinical improvement or clinical deterioration. Immunotypes did not associate chronologically with disease duration but rather reflect variations in the nature and kinetics of individual patient’s immune response. Here we demonstrate that immunophenotyping can stratify patients to high and low risk clinical subtypes, with distinct cytokine and antibody profiles, that can predict severity progression and guide personalized therapy.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献