Widespread occurrence of hybrid internal-terminal exons in human transcriptomes

Author:

Fiszbein AnaORCID,McGurk MichaelORCID,Calvo-Roitberg EzequielORCID,Kim GyeungYun,Burge Christopher B.ORCID,Pai Athma A.ORCID

Abstract

AbstractAlternative RNA processing is a major mechanism for diversifying the human transcriptome. Messenger RNA isoform differences are predominantly driven by alternative first exons, cassette internal exons and alternative last exons. Despite the importance of classifying exons to understand isoform structure, there is a lack of tools to look at isoform-specific exon usage using RNA-sequencing data. We recently observed that alternative transcription start sites often arise near annotated internal exons, creating “hybrid” exons that can be used as both first or internal exons. To investigate the creation of hybrid exons, we built the HIT (Hybrid-Internal-Terminal) exon pipeline that systematically classifies exons depending on their isoform-specific usage. Using a combination of junction reads coverage and probabilistic modeling, the HIT index identified thousands of hybrid first-internal and internal-last exons that were previously misclassified. Hybrid exons are enriched in long genes with at least ten internal exons, have longer flanking introns and strong splice sites. The usage of hybrid exons varies considerably across human tissues, but they are predominantly used in brain, testis and colon cells. Notably, genes involved in RNA splicing have the highest fraction of intra-tissue hybrid exons. Further, we found more than 100,000 inter-tissue hybrid exons that changed from internal to terminal exons across tissues. By developing the first method that can classify exons according to their isoform contexts, our findings demonstrate the existence of hybrid exons, expand the repertoire of tissue-specific terminal exons and uncover unexpected complexities of the human transcriptome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3