Epigenetic Patterns in a Complete Human Genome
Author:
Gershman ArielORCID, Sauria Michael E.G., Hook Paul W.ORCID, Hoyt Savannah J., Razaghi Roham, Koren Sergey, Altemose NicolasORCID, Caldas Gina V., Vollger Mitchell R., Logsdon Glennis A., Rhie ArangORCID, Eichler Evan E., Schatz Michael C., O’Neill Rachel J., Phillippy Adam M., Miga Karen H., Timp WinstonORCID
Abstract
ABSTRACTThe completion of the first telomere-to-telomere human genome, T2T-CHM13, enables exploration of the full epigenome, removing limitations previously imposed by the missing reference sequence. Existing epigenetic studies omit unassembled and unmappable genomic regions (e.g. centromeres, pericentromeres, acrocentric chromosome arms, subtelomeres, segmental duplications, tandem repeats). Leveraging the new assembly, we were able to measure enrichment of epigenetic marks with short reads using k-mer assisted mapping methods. This granted array-level enrichment information to characterize the epigenetic regulation of these satellite repeats. Using nanopore sequencing data, we generated base level maps of the most complete human methylome ever produced. We examined methylation patterns in satellite DNA and revealed organized patterns of methylation along individual molecules. When exploring the centromeric epigenome, we discovered a distinctive dip in centromere methylation consistent with active sites of kinetochore assembly. Through long-read chromatin accessibility measurements (nanoNOMe) paired to CUT&RUN data, we found the hypomethylated region was extremely inaccessible and paired to CENP-A/B binding. With long-reads we interrogated allele-specific, longrange epigenetic patterns in complex macro-satellite arrays such as those involved in X chromosome inactivation. Using the single molecule measurements we can clustered reads based on methylation status alone distinguishing epigenetically heterogeneous and homogeneous areas. The analysis provides a framework to investigate the most elusive regions of the human genome, applying both long and short-read technology to grant new insights into epigenetic regulation.
Publisher
Cold Spring Harbor Laboratory
Reference95 articles.
1. Initial sequencing and analysis of the human genome 2. The Sequence of the Human Genome 3. S. Nurk , S. Koren , A. Rhie , M. Rautianen , A. v. Bzikadze , A. Mikheenko , M. R. Vollger , N. Altemose , L. Uralsky , A. Gershman , S. Aganezov , S. J. Hoyt , M. Diekhans , G. A. Logsdon , M. Alonge , S. E. Antonarakis , M. Borchers , G. G. Bouffard , S. Y. Brooks , G. V. Galdas , H. Cheng , C.-S. Chin , W. Chow , G. de Lima Leonardo , M. Y. Dennis , P. C. Dishuck , R. Durbin , T. Dvorkina , I. T. Fiddes , G. Formenti , R. S. Fulton , A. Fungtammasan , E. Garrison , P. G. S. Grady , T. A. Graves-Lindsay , I. M. Hall , N. F. Hansen , G. A. Hartley , M. Haukness , K. Howe , M. W. Hunkapiller , C. Jain , M. Jain , E. D. Jarvis , P. Kerpedjiev , M. Kirsche , M. Kolmogorov , J. Korlach , M. Kremitzki , H. Li , V. V. Maduro , T. Marschall , A. M. McCartney , R. C. McCoy , D. E. Miller , J. C. Mullikin , E. W. Myers , B. Paten , P. Peluso , D. Porubsky , T. Potapova , E. I. Rogaev , J. A. Rosenfeld , S. L. Salzberg , V. A. Schneider , J. Sedlazeck Fritz , K. Shafin , C. J. Shew , A. Shumate , Y. Sims , D. C. Soto , I. Sović , A. Streets , B. A. Sullivan , F. Thibaud-Nissen , J. Torrance , J. Wagner , B. P. Walenz , Wood Jonathan M. D, C. Xiao , S. M. Yan , A. C. Young , U. Surti , I. A. Alexandrov , P. A. Pevzner , J. L. Gerton , R. J. O’Neill , W. Timp , J. M. Zook , M. C. Schatz , E. E. Eichler , K. H. Miga , A. M. Phillippy , The complete sequence of a human genome. bioRxiv (2021). 4. Heterochromatin: Guardian of the Genome 5. Epigenetics regulate centromere formation and kinetochore function
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|