Bcl11b is a Newly Identified Regulator of Vascular Smooth Muscle Phenotype and Arterial Stiffness

Author:

Valisno Jeff Arni C.,Elavalakanar Pavania,Nicholson Christopher,Singh Kuldeep,Avram Dorina,Cohen Richard A.,Mitchell Gary F.,Morgan Kathleen G.,Seta Francesca

Abstract

ABSTRACTB-cell leukemia 11b (Bcl11b) is a zinc-finger transcription factor known as master regulator of T lymphocytes and neuronal development during embryogenesis. Bcl11b-interacting protein COUP-TFII is required for atrial development and vasculogenesis, however a role of Bcl11b in the adult cardiovascular system is unknown. A genome-wide association study (GWAS) recently showed that a gene desert region downstream ofBCL11Band known to function asBCL11Benhancer harbors single nucleotide polymorphisms (SNPs) associated with increased arterial stiffness. Based on these human findings, we sought to examine relations between Bcl11b and arterial function using mice with Bcl11b deletion. We report for the first time that Bcl11b is expressed in vascular smooth muscle (VSM) and transcriptionally regulates the expression of VSM contractile proteins smooth muscle myosin and smooth muscle α-actin. Lack of Bcl11b in VSM-specific Bcl11b null mice (BSMKO) resulted in increased expression of Ca++-calmodulin-dependent serine/threonine phosphatase calcineurin in BSMKO VSM cells, cultured in serum-free condition, and in BSMKO aortas, which showed an inverse correlation with levels of phosphorylated VASPS239, a regulator of cytoskeletal actin rearrangements. Moreover, decreased pVASPS239in BSMKO aortas was associated with increased actin polymerization (F/G actin ratio). Functionally, aortic force, stress and wall tension, measured ex vivo in organ baths, were increased in BSMKO aortas and BSMKO mice had increased pulse wave velocity, thein vivoindex of arterial stiffness, compared to WT littermates. Despite having no effect on baseline blood pressure or angiotensin II-induced hypertension, Bcl11b deletion in VSM increased the incidence of aortic aneurysms in BSMKO mice. Aneurysmal aortas from angII-treated BSMKO mice had increased number of apoptotic VSM cells. In conclusion, we identified VSM Bcl11b as a novel and crucial regulator of VSM cell phenotype and vascular structural and functional integrity.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bcl11b/Ctip2 in Skin, Tooth, and Craniofacial System;Frontiers in Cell and Developmental Biology;2020-12-10

2. miR-214 is Stretch-Sensitive in Aortic Valve and Inhibits Aortic Valve Calcification;Annals of Biomedical Engineering;2019-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3